SANGHUN JUNG

EDUCATION

EDUCATION	
University of Washington (UW) Ph.D. in Computer Science and Engineering Advisor: Prof. Byron Boots	2022 - present
Korea Advanced Institute of Science and Technology (KAIST) M.S. in Artificial Intelligence Advisor: Prof. Jaegul Choo GPA: 4.06 / 4.30	2020 - 2022
Korea University B.S. in Computer Science and Engineering GPA: 3.70 / 4.50; Major GPA: 4.11 / 4.50 Military service during 2015 - 2016	2013 - 2019
Research Interest	
Robot perception, Mobile manipulation, Learning from demonstration, and Autonomo	us driving
Selected Projects	
 DARPA Robotic Autonomy in Complex Environments with Resiliency (RA Perception Team Member High-speed ground vehicle autonomy in complex off-road terrain. Keywords: Precise estimation of ground, uncertainty estimation, traversability predict 	Sep. 2022 - present
Visual Navigation for Mobile Robots in Indoor Environments Project member Learning to plan from visual information in indoor environments. Keywords: Mobile manipulation, multi-modal learning, sim-to-real transfer	Nov. 2023 - present
Image-based Traversability Prediction using Self-supervision <i>Project Lead</i> Visual traversability learning from self-supervision signals. Keywords: Contrastive learning, vehicle trajectories, segment-anything	Mar. 2023 - present
Effective Adaptation of LiDAR Segmentation to Distributional Shifts Project Member Self-training with ensembling; simulation of beam pattern difference, temporal consistency Keywords: Self-training, structural point cloud subsampling, learned aggregation	Oct. 2022 - Mar. 2023
Class-aware Test-time Adaptation for Image Classification Project Lead Class-aware feature alignment for test-time adaptation using pre-calculated source statistics. Keywords: Feature alignment, utilization of source distribution	May 2022 - Mar. 2023
Publications	

* denotes equal contributions

- [7] Sanghun Jung, JoonHo Lee, Xiangyun Meng, Byron Boots, and Alexander Lambert. V-STRONG: Visual Self-Supervised Traversability Learning for Off-road Navigation. International Conference on Robotics and Automation (ICRA), 2024. [paper]
- [6] Amirreza Shaban*, Brian JoonHo Lee*, <u>Sanghun Jung</u>*, Xiangyun Meng, and Byron Boots. LiDAR-UDA: Self-ensembling Through Time for Unsupervised LiDAR Domain Adaptation. *International Conference on Computer Vision* (ICCV), 2023. Oral Presentation (1.8% acceptance rate) [paper] [code]

- [5] Sanghun Jung, Jungsoo Lee, Nanhee Kim, Amirreza Shaban, Byron Boots, and Jaegul Choo. CAFA: Class-Aware Feature Alignment for Test-Time Adaptation. International Conference on Computer Vision (ICCV), 2023. [paper]
- [4] Kyungmin Jo*, Gyumin Shim*, Sanghun Jung, Soyoung Yang, and Jaegul Choo. CG-NeRF: Conditional Generative Neural Radiance Fields. Winter Conference on Applications of Computer Vision (WACV), 2023. [paper]
- [3] Sanghun Jung*, Jungsoo Lee*, Daehoon Gwak, Sungha Choi, and Jaegul Choo. Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation. International Conference on Computer Vision (ICCV), 2021. Oral Presentation (3.0% acceptance rate) [paper] [code]
- [2] Sungha Choi*, Sanghun Jung*, Huiwon Yun, Joanne T. Kim, Seungryong Kim, and Jaegul Choo. RobustNet: Improving Domain Generalization in Urban-Scene Segmentation via Instance Selective Whitening. Computer Vision and Pattern Recognition (CVPR), 2021. Oral Presentation (4.1% acceptance rate) [paper] [code]
- Jinho Choi, <u>Sanghun Jung</u>, Deokgun Park, Jaegul Choo, and Niklas Elmqvist. Visualizing for the Non-Visual: Enabling the Visually Impaired to Use Visualization. *Computer Graphics Forum* (EuroVIS), 2019. [paper]

Preprints

- [2] Jungsoo Lee, Juyoung Lee, <u>Sanghun Jung</u>, and Jaegul Choo. Improving Evaluation of Debiasing in Image Classification. arXiv preprint: 2206.03680, 2023. [paper]
- Minsoo Lee, Chaeyeon Chung, Hojun Cho, Minjung Kim, <u>Sanghun Jung</u>, Minhyuk Sung, and Jaegul Choo. 3D-GIF: 3D-Controllable Object Generation via Implicit Factorized Representations with Unposed 2D Images. arXiv preprint: 2203.06457, 2022. [paper]

WORK EXPERIENCE

Bear Robotics Korea	Seoul, South Korea
Robotics Engineer	2019 - 2020
Conducted projects such as safe velocity controller and odometry and localization testing	
Bear Robotics	Redwood City, CA, US
Robotics Engineering Intern	2018 - 2019
Developed robot algorithms such as depth camera extrinsic calibration	
Scholarship	
KAIST Support Scholarship, KAIST	2020, 2021
Veritas Program Scholarship, Korea University	2018
Academic Excellence Scholarship for Freshmen, Korea University	2013
Awards	
Best Poster Award - Standardized Max Logits, KAIST AI Workshop	2022
Invited Talks	
Pre-Training for Robot Learning Workshop @ CoRL 2023 (Spotlight Talk) Visual Self-Supervised Traversability Learning for Off-road Navigation	Nov., 2023
KAIST AI Workshop	Jan., 2022
Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpecte	d Road Obstacles
Hyundai Motor Group AI Research Seminar	Jul., 2021
Domain Generalization in Urban-Scene Segmentation	
Naver AI LAB	Jul., 2021
RobustNet: Improving Domain Generalization in Segmentation	
Programming Skills	

Languages: Python, C++, Bash

Technologies: Pytorch, Docker, Linux, Robot Operating System (ROS1)